

Plasma Measurement II

Ion Probes

Plasma Probe on Sounding Rocket VII

Chi-Kuang Chao

Graduate Institute of Space Science, National Central University

May 17, 2017

Outline

- Learning from SR-V
- Early design of ion probe for SR-VII
- Final design
- Tests
- Final procedure

Learning from SRV

- Attitude determination of rocket
- VGI anomaly
- VG2 (ΔV) pattern distortion
- NoVG2 shown in E-region
- Possible improvements in future missions

Attitude determination

- A design fault in determining the attitude of Sounding Rocket V
- Additional vector measurement is required (sun sensor, star sensor, or an extra tilt ion probe)

lon saturation current

VGI anomaly

VGI anomaly

The dropped VG1 should be between -10 and -15 volts. The -10-volt is the lowest limit of A/D conversion and -15-volt is the lowest limit of payload's power supply.

VGI and li comparison (up-leg)

lon concentration

VGI anomaly

- VGI and li are measured from ion trap
- The VGI anomaly could be caused by a metal fiber connection between GI (aperture) and G3 (suppressor) during T+61.5s and T+81.2s
- The anomaly will suck more ions into the ion trap and increase ion saturation current
- A calibration for VGI anomaly could be performed via simulation or experiment

VG2 patterns measured in lab

Low ion flux

High ion flux

VG2 measurement

VG2 patterns in F-region

lon temperature

NoVG2 in E-region

A possible cause

- VGI is only measured from ion trap (IT), not from retarding potential analyzer (RPA)
- VG2 measurement would be insensitive for very low ion flux condition (< 0.002 μ A)
- If both VGIs in IT and RPA have the same voltage, the appropriate VG2 should be available in E-region during the up-leg path from our measurement
- If the VG1 in IT is abnormal low, li in IT will increase very high and RPA cannot find the corresponding 14dB and 20dB level of the li by modulating VG2

Possible improvements in future missions

- New configuration \rightarrow attitude determination
 - Two ion traps (one is directed to normal and the other is tilt)
 - One retarding potential analyzer with normal direction
 - One three-axial flux-gate magnetometer
 - One Langmuir probe (optional) for electron information
- It is requested to clean up the inside of nose cone before launch
- High sensitive and good responsive amplifiers for retarding potential analyzer → deriving ion temperature at very low ion flux condition and from good pattern

What's new for ion payload onboard Sounding Rocket VII

- Altitude determination of sounding rocket
- Refining RPA's circuit
- Performing plasma injection test in our space payload laboratory
- Sensor cleaning with ion bombardment and heat conduction
- Add one Langmuir probe

Sensors (early design)

SR-V

- One normal-directed ion trap
- One normal-directed retarding potential analyzer
- One 3-axis aspectmeter

SR-VII

- One normal-directed ion trap
- One normal-directed retarding potential analyzer
- One 3-axis aspectmeter
- One tilt-directed ion trap
- Langmuir probe

Mechanical specification (early design)

SR-V

- Dimension
 - Sensor head: 248 mm D x
 95 mm H
 - Electronics box: 200 mm D x
 200 mm H
- Mass
 - Sensor head: **6.920** kg
 - Electronics box: 6.760 kg
 - Total: **13.680** kg

SR-VII

- Dimension 248 inner, 300 outer
 - Sensor head: (248 or more) mm D x 195 mm H
 - Electronics box: 200 mm D x
 IO0 mm H

300 mm D x 200 mm H

- Mass
 - Sensor head: ~15 kg
 - Electronics box: ~4 kg
 - Total mass: ~19 kg

Electrical specification (early design)

SR-V

- Power: +28 V, **420** mA, **11.76** W
- Measurement range:
 - Current: 10⁻¹¹~10⁻⁶ A
 - Magnetometer: ±70000 nT with ± 2°
- A/D conversion: ±10 V, 16 bits
- Output: single 38.4 kbps RS-422 serial port at and 6 analog outputs for backup channels

SR-VII 150 mA, < 4.2W

- Power: +28 V, **570** mA, **<16** W
- Measurement range: ERV: 3x10⁻¹⁰ 1x10⁻⁵
 Other: 1x10⁻¹¹ 3.3x10⁻⁷
 - Current: 10⁻¹¹~10⁻⁶ A
 - Magnetometer: ±70000 nT with ± 2°
- A/D conversion: ±10 V, 16 bits
- Output port: single **76.8** kbps RS-422 serial port

Design

- Goals
- Requirements
- Sensors
- Electronics
- Geophysical parameters
- Data packets
- Pre-launch criterions

Goals

- Scientific goals
 - In-situ measure the ionospheric plasma temperature and density profiles over Taiwan
 - Co-incident E-region plasma irregularity observations (30 MHz radar, 52 MHz radar, digisonde chain, GPS scintillation measurement, and FORMOSAT-3/COSMIC)
- Capacity build-up
 - Rocket-based plasma probe technology transfer
 - Attitude determination of sounding rocket

Requirements

- Field of view
- Magnetic field
- Electrical potential
- Heating process

FOV

- Any obstacles in front of sensors will block or alter plasma flow into the sensors
- 210 degree forward-facing field of view
- No obstacle in front of ion sensors when the in-situ measurement is on

Magnetic field (close to sensors)

- Magnetic field will distort the path of incoming plasma
- No permanent magnet and magnetized material nearby the sensors
- Interference on magnetic field should be less than
 0.05 Gauss at the sensors

Magnetic field (close to aspectmeter)

- Magnetic field will affect the accuracy of aspectmeter
- Interference on magnetic field should be less than 0.05 Gauss in amplitude and far away from 4 Hz in frequency

Electric potential

Nose Cone

Ion Sensors

Sounding Rocket

• In general, electric potential of sounding rocket will be negatively biased with respect to ambient plasma. However, during the sunlit condition, solar EUV may knock off electrons from conductive skin of sounding rocket, the sounding rocket will be positively biased with respect to ambient plasma. Electric potential should be smaller than I volt with respect to ambient plasma (negatively biased is fine for this measurement)

Conductive paint on the surface of Sounding Rocket is necessary

SOP for heating process

- I. Installing filament and thermocouple around the ion sensors.
- 2. Connecting cables between the feedthroughs on the rocket body and filament/thermocouple.
- 3. Sealing the nose cone.
- 4. Filling in fresh N_2 gases.
- 5. Turning on heater controller and adjusting the voltage regulator to limit the temperature up to 10°C for 60 to 90 minutes.
- 6. Turning off the voltage regulator and heater controller.
- 7. Keeping the fresh N₂ gases flow continuously.

Sensors

- Two ion traps (normal-directed and tilt-directed)
- One retarding potential analyzer
- One Langmuir probe
- One three-axis flux-gate magnetometer (installed inside the electronics box)

Principles of measurement

- Measuring electric current generated from ionospheric ions hitting on collector plate
- For IT, the retarding voltage is floating potential
- For RPA, the retarding voltage will be varied with electronic circuit

$$\Phi = C \sum_{s} n_{so} U_{s} \left\{ \frac{1}{2} \left[1 + erf\left(\beta_{s}F_{s}\right) + \frac{\exp\left(-\beta_{s}^{2}F_{s}^{2}\right)}{\sqrt{\pi}\beta_{s}U_{s}} \right] \right\} \qquad \beta_{s} = \sqrt{\frac{m_{s}}{2\kappa T_{s}}}, \ \beta_{s}F_{s} = U_{s} / \sqrt{\frac{2\kappa T_{s}}{m_{s}}} - \sqrt{\frac{q_{s}\phi_{M}}{\kappa T_{s}}} \,.$$

~ 20 kg

Mechanical parameters

- Mass estimates
 - Total: 20 kg
- Temperature limits
 - Sensor head: 0 100 °C (operating), -10 110 °C (Nonoperating)
 - Electronics box: 0 50 °C (operating), -10 70 °C (Nonoperating)

Electronics box

Grid specification

Sensor	r Grid Functi		Voltage	Mesh density (lines/inch)	Wire size (inch)	Transparency	
	GI	Shield	floating potential	40	3.937x10 ⁻³	0.7098	
ISN and	G2	Shield	floating potential	165	1.969x10 ⁻³	0.4559	
IST	G3	Suppressor	-15V	40	3.937x10 ⁻³	0.7098	
	Collector	Collector	-6 V	N/A	N/A	N/A	
IRV	GI	Shield	floating potential	40	3.937x10 ⁻³	0.7098	
	G2	Retarding grid	-1.48 to 3.0∨ -5.4 to 6.0∨	165	1.969x10 ⁻³	0.4559	
	G3	Suppressor	-15V	40	3.937x10 ⁻³	0.7098	
	Collector	Collector	-6 V	N/A	N/A	N/A	

Electronics

- One pre-amp board
- One post-amp board
- One control board
- One three-axis flux-gate magnetometer

Electronics

BOO-LECARA - JEOHA NOI

Post amp and control boards

3-axis fluxgate magnetometer

Aspectmeter

Installation	Inside the electronics box
Туре	3-axis fluxgate magnetometer
Dimension	75 mm L x 75 mm W x 19 mm H
Weights	0.05 kg
Power requirement	+5 V, 30 mA, -5V, 10 mA
Operating temperature	0 °C~ 50 °C
Shock	100 G
Frequency response	DC to 400 Hz
Measurement range	-70000 to +70000 nT
Output analog signal	-4 to +4V
Output impedance	Ι 00 Ω
Accuracy	± 2 degrees

	型式	イオンプローブ 1	
ſ	网名	ブロック図	
	图番	ADC257-011	

107/11

Power requirements

- Input voltage: 28±6VDC
- Current: I 50 mA
- Power consumption: 4.2 W

Communication interface

- Analog/digital data communication
- Analog output: ±10 volt
- Digital output: RS-422
- Adjustable baud rate: 38.4/76.8 kbps, default is 76.8 kbps.
- Dual D-sub 15-pin connectors: one D-sub connector with pins (CN1) to IOP and battery, and the other connector with sockets (CN2) to telemetry

	端子	表	機器名稱	亦 IOI	N PROE	3E2		_
					1	ネクタ	品名	
	コネクタ記号	CN-1	(1/	1)	機器側	DAM-15	5 P	Connector
					計装側	DAM-15	5 S	
番号	配 線 先	信号	名	線種	電流容量	端末処理	備	考
1	BATT	+ 2 8 V		N				
2	BATT	СОМ		N				
3	N. C							
4	ТМ	DATA (+)		N		-w-		
5	ТМ	DATA (-)		N				
6	ТМ	CLOCK (+)		N		-w-		
7	TM	CLOCK (-)		N				
8	TM	СОМ		N				
9	N. C			-				
10	N. C							
11	N. C							
12	N. C							
13	N. C							
14	N. C			_				
15	N. C							
16								

	端子	- 表 機器名 称	5 10	N PROB	BE 2		-	
		0		=	ネクタ	品名		
	コネクタ記号	- CN-2 (1/	1)	機器側	DAM-1	5 S	Connector	
				計装側	DAM-1	5 P	in payload	
悉号		信号名	線種	雷流容量	端末如理	備	考	
1		IRV MONI (S1)	S		-0	10		
2	1	ERV MONI (LP)	s					
3		ISN MONI (S2)	s		-0-			
4		IST MONI (S3)	s					
5		СОМ	S					
6		VG2 MONI	S		-0	シ–ルド:14PIN		
7		CLOCK SEL	N			7-8 オープン:76.8KHz		
8		СОМ	N			7-8 ジョート :38.4	1KHz	
9		VG1 MONI (S2)	S					
10		GAX MONI	S		-0			
11		GAY MONI	S	·	-0-			
12		GAZ MONI	S		<u> </u>			
13		СОМ	S					
14		СОМ	S			6ピンのシール	イド	
15								
16								
17				1				

Geophysical parameters

- Electron temperature (Langmuir probe)
- Ion temperature (retarding potential analyzer)
- Ram speed (retarding potential analyzer)
- Composition (retarding potential analyzer)
- Angle of attack (aspectmeter and two ion traps)
- Ion density (normal-directed ion trap, retarding potential analyzer, aspectmeter, and two ion traps)

Measurement range

Parameters	Range (A)	Voltage (V)
ERV	3×10 ⁻¹⁰ - 1×10 ⁻⁵	0.0003 (10/2 ¹⁶⁻¹) - 10
IRV	1×10 ⁻¹¹ - 3.3×10 ⁻⁷	0.0003 - 10
ISN	1x10 ⁻¹¹ - 3.3x10 ⁻⁷	0.0003 - 10
IST	1×10 ⁻¹¹ - 3.3×10 ⁻⁷	0.0003 - 10

GAX				GAY			GAZ		
司波数 (K	(Hz)	偏差(dB)	出力(Vp-p)	目波数(KHz)	偏差(dB)	出力(Vp-p)	目波数(KHz)	偏差(dB)	出力(Vp-p)
	1	0.000	10.000	1	0.000	10.000	1	0.000	10.000
	10	0.000	10.000	10	0.000	10.000	10	0.000	10.000
	20	-0. 282	9.680	20	-0. 247	9.720	20	-0. 175	9.800
	50	-1.556	8.360	50	-1.391	8. 520	50	-1. 432	8. 480
	100	-4. 702	5.820	100	-4. 466	5.980	100	-4.672	5.840
	200	-10.995	2.820	200	-10.663	2.930	200	-10. 873	2.860
	500	-22.710	0.732	500	-22. 430	0.756	500	-22. 615	0.740
1	000	-31.119	0. 278	1000	-30. 995	0. 282	1000	-30. 995	0. 282

ION PROBE #1 入出力特性

'07/11/20

1RV		ERV	5	ISN		IST	
IN (A)	OUT (V)	IN (A)	OUT (V)	IN (A)	0UT (V)	IN (A)	0UT (V)
1.90E-10	0.0066	1.80E-09	0.0018	1.90E-10	0.0065	1.90E-10	0.0065
2.90E-10	0.0095	2.80E-09	0.0028	2.90E-10	0.0095	2.90E-10	0.0094
5.80E-10	0.0185	5.80E-09	0.0058	5.80E-10	0.0185	5.80E-10	0.0181
1.08E-09	0.0333	1.08E-08	0.0108	1.08E-09	0.0335	1.08E-09	0.0330
3. 08E-09	0.0931	1.00E-07	0.1001	3. 08E-09	0.0938	3.08E-09	0.0929
5. 08E-09	0.1525	1.00E-06	0.9924	5.08E-09	0.1540	5.08E-09	0. 1528
1.01E-08	0.3016	1.00E-05	9.917	1.01E-08	0.3047	1.01E-08	0. 3028
2.01E-08	0. 5996			2.01E-08	0.6056	2.01E-08	0.6027
4. 01E-08	1.1960	1.1		4.01E-08	1.2070	4.01E-08	1.2020
1.00E-07	2.9830			1.00E-07	3.0140	1.00E-07	3.0020
2.00E-07	5.9640			2.00E-07	6.0250	2.00E-07	6.0040
3.00E-07	8.9440		<u>12</u>	3.00E-07	9.0360	3.00E-07	9.0050
3. 40E-07	10.136			3. 40E-07	10. 241	3. 40E-07	10. 2060

Data packets

- Data packet: 96 words/frame
- Word unit: 16 bits/word (MSB first)
- Frame period/rate:
 - 20 ms/50 frame · s⁻¹ if 76.8 kbps RS-422 is selected
 - 40 ms/25 frame · s⁻¹ if 38.4 kbps RS-422 is selected

Packet contents of ion probe onboard Sounding Rocket VII	W00	W01	W02	W03	W0 4	W05	W06	W07	W08	W09	W10	WII
	SYNC	FC	ERV	ISN	IRV	ERV	GAX	IRV	ERV	IST	IRV	ERV
SYNC: 0xEB90 FC: sequence count	W12	WI3	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23
	GAY	IRV	ERV	ISN	IRV	ERV	GAZ	IRV	ERV	IST	IRV	ERV
	W24	W25	W26	W27	W28	W29	W30	W31	W32	W33	W34	W35
	VGI	IRV	ERV	ISN	IRV	ERV	GAX	IRV	ERV	IST	IRV	ERV
	W36	W37	W38	W39	W40	W41	W42	W43	W44	W45	W46	W47
	GAY	IRV	ERV	ISN	IRV	ERV	GAZ	IRV	ERV	IST	IRV	ERV
	W48	W49	W50	W51	W52	W53	W 54	W55	W56	W57	W58	W59
	VGI	IRV	ERV	ISN	IRV	ERV	GAX	IRV	ERV	IST	IRV	ERV
	W60	W61	W62	W63	W64	W65	W66	W67	W68	W69	W70	W71
	GAY	IRV	ERV	ISN	IRV	ERV	GAZ	IRV	ERV	IST	IRV	ERV
	W72	W73	W7 4	W75	W76	W77	W78	W79	W80	W81	W82	W83
	VGI	IRV	ERV	ISN	IRV	ERV	GAX	IRV	ERV	IST	IRV	ERV
	W84	W85	W86	W87	W88	W89	W90	W91	W92	W93	W94	W95
	GAY	IRV	ERV	ISN	IRV	ERV	GAZ	IRV	ERV	IST	IRV	ERV

Data packet (cont.)

- Packet content:
 - Ion saturation current (ISN) from normal-directed IT
 - Ion saturation current (IST) from tilt-directed IT
 - Ion current (IRV) from normal-directed RPA (with retarding voltage sweeping between -1.48 and 3.0 or -5.84 and 6.0 volts with voltage step ΔV =0.02V)
 - Electron current (ERV) from Langmuir probe (with probe voltage sweeping between -1.48 and +3.0 or -5.84 and +6.0 volts with voltage step ΔV =0.02V)
 - Floating potential (VGI) from normal-directed IT
 - X-,Y-, and Z-axis components (GAX, GAY, and GAZ) of geomagnetic field from 3-axis flux-gate magnetometer (aspectmeter)

Data packet (cont.)

• For **76.8** kbps:

- 200 Hz for VGI, GAX, GAY and GAZ samples (λ ~ 20 m for 2 km/s uplift speed)
- 400 Hz for ISN and IST samples (λ ~ IO m for 2 km/s uplift speed)
- I600 Hz for IRV and ERV samples (448/1184 samples or 14/37 frames for IRV/ERV sweeping from low to high with ΔV=0.02V)
- ~3.57/1.35 Hz for Ti and Te or λ ~ 0.56/1.48 km for 2 km/s uplift speed

- For **38.4** kbps:
 - IOO Hz for VGI, GAX, GAY and GAZ samples (λ ~ 40 m for 2 km/s uplift speed)
 - 200 Hz for ISN and IST samples (λ ~ 20 m for 2 km/s up speed)
 - 800 Hz for IRV and ERV samples (448/1184 samples or 14/37 frames for 1 IRV and ERV sweeping from low to high ΔV=0.02V)
 - ~1.79/0.68 Hz for Ti and Te or λ ~ 1.12/2.96 km for 2 km/s uplift speed

 $I \ge full waveform (317 frames, 6.34s) = I \ge long waveform (37 frames, 0.74s) + 20 \ge short waveforms (14 frames, 0.28s).$

Calibration waveform (14 frames) will happen in front of the long waveform every 9 full waveform (2,853 frames, 57.06s).

Criterions for pre-launch check

- ISN (W03) and IST (W09)
- IRV (W04)
- ERV (W05)
- VGI (W24)
- GAX, GAY, and GAZ (should not be used for prelaunch check)
- Calibration is triggered every 57.06 seconds.

ISN and IST

- ISN: **W03**, W15, W27, ..., W87.
- IST: **W09**, W21, W33, ..., W93.
- If neither plasma nor electric current ejection (calibration) to collector, the output of the ISN and IST should be close to 0 volt.
- Calibration off: 0x7F00 < (ISN/T) < 0x8100
- Calibration on: 0x9500 < (ISN/T) < 0x9700

1130

1135

1125

1115

1120

1140

IRV

- IRV: **W04**, W07, W10, ..., W94.
- If neither plasma nor electric current ejection (calibration) to collector, the output of the IRV should be close to 0 volt.
- Calibration off: 0x7E00 < IRV < 0x8200
- Calibration on: 0x9500 < IRV < 0x9700

ERV

- ERV:W02, **W05**, W08, ..., W94.
- If neither plasma nor electric current ejection (calibration) to collector, the output of the ERV should be close to 0 volt.
- Calibration off: 0x7F00 < ERV < 0x8100
- Calibration on: 0x6E00 < ERV < 0xA700

Frame Count

ERV

- To use W05 as pre-launch check of ERV.
- The first ERV (W02) in each frame is smaller than the other nearby ERV reading. It is not a good candidate for check.

EB 90 0E C6 7F B1 8D 49 9C F2 7F BD D3 80 9C F4 7F BD AC 71 9C F0 7F BB 6C E5 9C ED 7F BD 8D 47 9C EC 7F BD 89 6A 9C ED 7F BD AC 70 9C EA 7F C0 81 36 9C EC 7F C1 8D 48 9C E9 7F C0 D3 A4 9C F2 7F BD AC 74 9C EF 7F C1 6D 01 9C EA 7F BF 8D 47 9C EC 7F BF 89 40 9C ED 7F C1 AC 73 9C EE 7F BD 81 38 9C EF 7F C1 8D 4A 9C EF 7F C2 D3 92 9C EF 7F C0 AC 72 9C EF 7F C1 6C F5 9C EC 7F C1 8D 4C 9C E8 7F C2 89 75 9C E9 7F C5 AC 6D 9C E8 7F C1 81 38 9C E7 7F C2 8D 4A 9C E6 7F C3 D3 7B 9C E5 7F C2 AC 75 9C E2 7F C4 6C E9 9C E0 7F C2 8D 49 9C DD 7F C4 89 77 9C DE 7F C2 AC 72 9C D6 7F C2 EB 90 0E C7 7F B5 8D 49 9C DB 7F C1 D3 9E 9C DD 7F C2 AC 74 9C D9 7F C2 6C F1 9C DA 7F C4 8D 46 9C DB 7F C3 89 4F 9C D9 7F C2 AC 78 9C DA 7F C3 81 35 9C D5 7F C4 8D 47 9C D6 7F C4 D3 99 9C DC 7F C4 AC 79 9C D8 7F C3 6D 08 9C D9 7F C4 8D 47 9C D7 7F C4 89 62 9C D3 7F C4 AC 77 9C D3 7F BF 81 37 9C D2 7F C4 8D 46 9C D2 7F C4 D3 80 9C D3 7F C4 AC 77 9C D3 7F C5 6C E7 9C CF 7F C4 8D 45 9C CE 7F C4 89 87 9C D1 7F C5 AC 7A 9C CD 7F C5 81 35 9C CD 7F C5 8D 47 9C CB 7F C6 D3 8D 9C CD 7F C5 AC 74 9C C8 7F C6 6C F4 9C CD 7F C5 8D 48 AC 76 9C CD 7F C6 EB 90 0E C8 7F B8 8D 48 9C CC

VGI

- VGI: **W24**, W48, and W72.
- Before launch, the value should be close to 0 volt.
- No calibration will be applied on VGI.
- 0x6000 < VGI < 0xA000

GAX, GAY, and GAZ

- GAX:W06,W30,W54, and W78.
- GAY:WI2,W36,W60, and W84.
- GAZ:WI8,W42,W66, and W90.
- Varied with payload attitude and local geomagnetic field and no calibration will be applied on them
- Should not be used for pre-launch check

Tests

- 11/13-14/2007: vibration test at ISAS
- II/25-29/2007: performance/heating test at OCU
- 01/10/2008: performance test at NCU
- 05/19/2008: analog signals to telemetry
- 06/26/2008: performance test of Langmuir probe
- 07/11/2008: digital signals to IOP at CSIST
- 08/15/2008: heating test on ion probes

Tests (cont.)

- 03/23-30/2009: nose cone separation tests
- 05/27-06/03/2009: rotation tests with IOP
- 06/22-25/2009: environmental tests thermal cycling
- 07/01/2009: vibration test
- 07/20/2009: vibration test payload only

2016 S-210 S2 10P UNRAFES. 8-7.16-1 86 SURVERUSE. Mit. -----1/2 1 制御加速度 149.53 (m/s'2) Blais? Blais? star-s 130.05-加加レベル 0.0 dB 322 出力電圧 (Volts) 0.057 加振制波数 1798.94 Max. (112) 赶過回教 强リ回数 撞引时間 0:06:52 探引状菌 分(対数) FF# 上样 标引家ie 7.00 8-3-45-1-開始 一時停止 停止 帰引停止 1825-15 (Chammer the second and a local second M

MOLDAN FIL

Chinese Street

Analog output interface

- Numbers of channel: 9
- Analog output level: ±10 volt
- A D-sub I5-pin connector to telemetry
- Redundant channels for science data

OP297

Output impedance < 10 Ω

端 子 表 機 器 名 称 ION PROBE2						
		8		=	ネクタ	品名
	コネクタ記号 CN-2 (1/1)			機器 側 DAM-15S		
	(Ka)			計装側	DAM-1	5 P
番号	配線先	信号名	線種	電流容量	端末処理	備考
1		IRV MONI (S1)	S		-0	
2		ERV MONI (LP)	S		-0-	
3		ISN MONI (S2)	S			
4		IST MONI (S3)	S		- -	
5		СОМ	S			
6		VG2 MONI	S		-0	シールト*:14PIN
7		CLOCK SEL	N			7-8 オープン:76.8KHz
8		СОМ	N			7-8 ショート :38.4KHz
9		VG1 MONI (S2)	S		-0	
10		GAX MONI	S		-0-	
11		GAY MONI	S		-0-	
12		GAZ MONI	S		- -	
13		СОМ	S			
14		СОМ	S			6ピンのシールド
15						
16						
17						S

A/D module of CSIST

- Sampling rate: I kHz
- Resolution for a sample: 8 bits

Test results

- CSIST did a great job to receive analog output signals from payload for SR7
- The interface between payload analog output and CSIST's A/D module is done
- The spikes shown in the GAX were caused by the recorder, not the interface between payload and CSIST's module

Air pressure

Stable

Decreasing

I-V curves

Stable

Decreasing

T_e in first 2 minutes

Stable

Decreasing

Results

- Stable
 - Average $T_e \sim 1260 \text{ K}$
 - Standard deviation of $T_{\rm e}$ ~ 40 K
- Decreasing
 - Average $T_e \sim 1250 \text{ K}$
 - Standard deviation of $T_{\rm e} \sim 50~K$

STREET STREET, STREET,

Comparison of heating test

Before heating

After heating

Digital signals

- Ion probe to IOP
- 38.4 kbps → PASSED
- 76.8 kbps→ FAILED

Nose cone separation tests

- 03/23/2009: nose cone separation without ion probe
- 03/30/2009: nose cone separation with ion probe

Rotation tests with IOP

- 05/27/2009 and 06/02/2009: incorrect data pattern from telemetry.
- 06/03/2009: payload data correct but IOP did not perform some procedures.

Data extraction from digital data from IOP

- Data obtained from telemetry
- Little ending arrangement
- ION_RX_IDX (I word or 2 bytes) should be within I (0100H) to 96 (6000H)
- Ion probe data: 96 words or 192 bytes

0)						S	R71	MR	C.d	at	- D	ata		Le	eac	ding	coc	le	1	
len:	1528	837	22	Т	ine i	/Cre	ato	n :		7					•	-	0:		12 /	F	512	
	0.		20	42	,pe,	00	02	DC.	55	nn.	CC.	DD	DD.	01	00	00	00					
	16.	ßЙ	00	93	09	DØ	02	00	00	00	00	па	02	FØ	FF	FØ	FF	0				
	32:	СЙ	<u>й2</u>	10	aa.	FØ	FF	F8	FF	<u>й8</u>	aa.	00	02	00	aa.	00	aa .					
	48:	ññ.	ññ	'nй	ñй	00	ñ0	no.	ñ0	ññ	ñй	ñй	ñЙ	ññ.	ñй	ñй	20	ON	R	Х	D	X
	64:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ыØ	FF				-	
	80:	00	00	00	00	ØĊ	00	Ē7	FF	FF	FF	FF	FF	FF	F F	00	00					
	96:	00	00	00	00	00	00	00	00	55	55	2D	00	20	00	90	EB					
	112:	11	38	03	80	17	80	05	80	01	80	92	60	02	80	04	80	.8		· · · · ·		
	128:	20	80	02	80	04	80	B5	ЗВ	0D	80	FF	7F	15	80	03	80		;			
	144:	02	80	70	D1	08	80	05	80	20	80	02	80	05	80	01	80					
	160:	08	80	00	80	16	80	07	80	FC	7F	91	60	04	80	02	80			· · · · · ·		
	176:	24	80	06	80	05	80	B6	ЗB	07	80	04	80	15	80	09	80	\$;			
	192:	00	80	79	D1	05	80	03	80	22	80	02	80	00	00	00	00	y	"			
	208:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	224:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	ЫÐ	90					
	240:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		<u>η</u> D	rob	e	data
	256:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00		··· P		T	
	272:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	288:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	83	00					
	304:	04	00	CØ	00	00	00	6F	79	08	00	00	00	00	00	20	48		.oy	н		
	320:	45	48	BN	2E	01	ИE.	FØ	UH	90	00	00	00	90	99	00	00	EH				
	336:	00	90	90	99	10	90	FD OC	88	05	90	EB	8E	32	01	00	00					
	352:	00	00	FD OF	FF 00	19	00	90	03	01	90	03	01	90	03	00	00					
	368:	03	00	00	03	01	00	03	00	00	03	01	00	03	01	00	03					
	384:	00	00	03	00	00	03	01	00	03	01	00	00	00	00	00	00					
	400:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	410.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	432.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	464.	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	480	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	496	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	512:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	528:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	544:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
	560:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				Ă	
	576:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				-	
	592:	00	00	00	00	06	00	00	00	88	88	00	00	99	99	00	10				۳	
	608:	00	11	01	39	AF	ЗD	43	09	90	C2	BC	F5	DD	CC	BB	BB	9	C		11	

IOP data retrieval

- num_of _frame = 24981
- count_error_ge: 263
 count_error_l988
- word_error_overwrite 2064
- Error rate = 9.01%
- Data loss rate = 0.086% to 2.19%

Thermal cycling tests

- 6/22-24: Thermal cycling test 3 cycles
 - Lowest temperature: -40°C power-off; -10°C power-on
 - Highest temperature: +65°C power-off; +50°C power-on
 - Ion payload failed during the 3rd cycle at -10°C power-on test, incorrect output data

lon probe temperature tolerance

- Storage temperature: -10°C to 70°C
- Operating temperature: 0°C to 50°C

Thermal cycling tests (cont.)

- 6/25/2009: Thermal cycling test I cycle
 - Lowest temperature: -10°C power-off; 0°C power-on
 - Highest temperature: +65°C power-off; +50°C power-on
 - Ion payload functions correctly

Vibration test

- 3.8 Grms, 10 minute, 3-axis
- Results during the test
 - Bit test failed
 - IRV from analog channel failed
 - ISN and IST unstable signal outputs
 - ERV performed OK
- All signals performed well before and after the test

Causes

- C2 skew connector of the RPA (IRV) was loosen.
- The nut and washer vibrated with payload will disturb the CI signal.

Performance test

- Heater: 20V
 - TEST_I:VGI=80V,VG2=I50V,VG3=200V, P=I.6xI0⁻² Pa
 - TEST_2:VGI=100V,VG2=150V,VG3=200V, P=1.6x10⁻² Pa
 - TEST_3:VG1=120V,VG2=150V,VG3=200V, P=1.6x10⁻² Pa
 - TEST_4:VG1=80V,VG2=150V,VG3=200V, P=2.4x10⁻² Pa
 - TEST_5:VGI=100V,VG2=150V,VG3=200V, P=2.4×10⁻² Pa
 - TEST_6:VG1=120V,VG2=150V,VG3=200V, P=2.4×10⁻² Pa
- Heater: 24V
 - **TEST_7**:VG1=80V,VG2=150V,VG3=200V, P=2x10⁻² Pa, normal RPA
 - **TEST_8**:VG1=80V,VG2=150V,VG3=200V, P~2.0x10⁻² Pa, tilt RPA

Vibration test - payload only

• 3.8 Grms, 10 minute, 3-axis

—IST(V)

07/21/2009

- Normal condition without vibration: D0907211001.bin
- Removing RPA (IRV) sensor from payload: D0907211021.bin
- Removing G3 cable from ISN sensor: D0907211040.bin
- Removing G1, G2, and G3 cables from ISN sensor: D0907211052.bin
- Removing G1, G2, G3, and C2 cables from ISN sensor: D0907211314.bin
- Removing G1, G2, G3, C2, and C1 cables from ISN: D0907211328.bin

Normal condition without vibration

No fluctuation on four sensors

Removing the RPA sensor

Removing G3 cable from ISN sensor

Removing GI, G2, and G3 cables from ISN sensor

Removing G1, G2, G3, and C2 cables from ISN sensor

Removing all the cables from ISN sensor

Only IST shows fluctuation during the test

NCREASING THE DISTANCE BETWEEN THE PLATES DECREASES CAPACITANCE

The distance between two charges determines their effect on one another

DECREASING THE DISTANCE BETWEEN THE PLATES INCREASES CAPACITANCE

One feedthrough with 4 ports is required for heating device

A feedthrough

- A feedthrough with 4 ports is required.
- The shell of the feedthrough will be connected with payload ground line.
- The feedthrough will be installed on the wall of rocket body and contact with conductive paint.

Heater I Heater 2

TC 2 TC 1

SOP for heating process

- Installing filament and thermocouple around the Langmuir probe and the retarding potential analyzer only.
- 2. Connecting cables between the feedthroughs on the rocket body and filament / thermocouple.
- 3. Sealing the nose cone.
- 4. Filling in fresh N₂ gases.
- 5. Turning on heater controller and adjusting the voltage regulator to limit the temperature up to 10°C for 60 to 90 minutes.
- 6. Turning off the voltage regulator and heater controller.
- 7. Keeping dry N₂ gases flow continuously.
- 8. Sensors can only be exposed in the air less than 24 hours.
Conductive paint

- Electrically conductive materials: FUJIKURA KASEI DOTITE D-500
- Filter:Ag
- Binder Acrylic
- Volume resistivity: $8 \times 10^{-5} \Omega \cdot cm$
- Specific gravity: 2.5
- Flash point: 4°C

Conductive paint (cont.)

- Curing schedule: $25^{\circ}C \times 3$ hrs or $100^{\circ}C \times 30$ min
- Storage condition: room temperature
- Thinner: S · SP-2
- Applicable by brushing simply or air spraying

Painting area

• The ratio of reference area to the collector should be larger than the ratio of electronic saturation current to ionic saturation current

$$A > A_c \sqrt{\frac{M_i}{m_e}} = \pi \left(\frac{5.9 \text{ or } 3.5 \text{ cm}}{2}\right)^2 \sqrt{1837 \times 30} \sim 6,418 \text{ or } 2,259 \text{ cm}^2$$
$$L > \frac{6,418 \text{ or } 2,259 \text{ cm}^2}{\pi \times 40 \text{ cm}} \sim 51 \text{ or } 18 \text{ cm}$$

• The thickness of the paint on the rocket body is

$$D \sim \frac{\frac{500 \text{ g}}{2.5 \text{ g} \cdot \text{cm}^{-3}}}{\pi \times 40 \text{ cm} \times (51 \text{ or } 18 \text{ cm})} \sim 0.3 \text{ or } 0.9 \text{ mm}$$

Estimations

- Test results
 - The resistance reduced as the temperature going up.
 - As the temperature going for more than 100°C, the conducting paint will have very low resistivity.
 - After cool down, the resistivity is the lowest.
- Painting area:
 - Should be larger than 6,418 cm² or 51 cm long on rocket body.
 - Thickness of the paint on the rocket body is **0.3 mm**.

SOP for conductive paint

- I. Cleaning up the surface for paint.
- 2. Air spraying 500 g of the conductive paint with **50 cm long and 0.3 mm thickness** around the rocket body.
- 3. Waiting for 3 hours to cure the coating under room temperature.
- 4. Testing the conduction between the payload and the conductive paint.

Possible paintings

payload section telemetry section

payload section telemetry section

FREQUENCY (MHz)

æ 0000000.00 +062°55/55 AZ 11 :09; 032 38² RGEL 09 =

B_x

By

Bz

|B|

正向離子捕獲計之電流讀數

斜向離子捕獲計之電流讀數

雷達觀測與現地量測之比較

- 飛試過程中,科學酬載功能正常,並可達成指定之目標。
- 在探空七號火箭下降的過程中(在 105 107 公里間),離
 子捕獲計同時偵測到極強的離子流量。流量顯示,此應與雙層的高電漿密度分布有關。其電漿溫度,有待進一步分析。
- 在 93 94 公里間,亦有明顯之高離子流量。與地面同相散 射雷達回波相比較,其出現時間與位置,與流星尾相關。

檢討與改進

- 此次飛試科學成果將繫於火箭飛行姿態之估量。火箭姿態的 異常現象,會影響科學任務的目標與準確度。我們需要更多 的時間嘗試,才可能解開可用之資料。
- 當火箭進行大幅度圓錐運動,雙離子捕獲器與三軸磁力計無 法有效地決定姿態。在未來,將使用抗高轉速之三軸微機電 陀螺儀(或雷射陀螺儀)搭配三軸磁力計來決定姿態。目前 將與中科院合作,將在探空八號與九號進行相關測試。