

Calibration and Test for Space Instrument II Environmental Tests EMC Test

Instructor: Chi-Kuang Chao Department of Space Science and Engineering National Central University April 24, 2024

- EMC
- 各類標準
- MIL-STD-461F
- Conducted EMC Test
- Radiated EMC Test

電磁相容性(EMC)源於英文 Electromagnetic
 Compatibility。定義為設備或系統在其電磁環境中能夠正常工作,且不會對該環境中任何事物構成不能承受的電磁擾動。

- 電磁相容性管理的目的:
 1.系統產生的電磁干擾不能太大。
 2.系統受到某個程度以下的電磁干擾仍然要正常運作。
- 電磁相容性包含下列兩類:電磁干擾(Emission)與電磁耐受 (Immunity)。

EMC = EMI + EMS

- 電磁耐受(Electromagnetic Susceptibility, EMS) :系統本能 身抵制外界電磁雜訊,免於外界電磁雜訊干擾的能力。
- 電磁干擾(Electromagnetic Interference, EMI) :系統本身因 動作時產生電磁雜訊,造成其他裝置的運作發生問題。
- 電磁干擾(EMI)加上電磁耐受(EMS)就是電磁相容性 (EMC)。

電磁干擾 (EMI)

- 電磁干擾來源分為自然干擾源與人為干擾源。
- 電磁干擾有兩種傳播途徑,一種是透過傳導,另一種是透過空間輻射。
- 導體中變化的電流或電壓會產生電磁波輻射,電流或電壓變化頻率越高,則輻射效率越高。
- 一般電子、電氣設備的切換式電源、CPU、晶體振盪器、印刷電路板 上的銅箔或纜線等都是干擾來源。
- 因脈衝電路的大量應用,凡是存在這種電壓或電流突然變化的地方, 都要考慮電磁干擾問題。

構成電磁干擾的要素

- 電磁干擾源(Source):指產生電磁干擾的任何系統或自然現象。
- 耦合途徑(Path):指將電磁干擾能量傳輸到受干擾設備的通路或媒介。
- 受干擾設備(Victim):指受到電磁干擾發生影響的設備。

電磁干擾的測試項目

- 輻射干擾 (Radiated Emission, RE)
- 傳導干擾 (Conducted Emission, CE)
- 諧波電流 (Harmonics)
- 電壓變動及閃爍(Voltage Fluctuation and Flicker)

電磁耐受的測試項目

- 靜電 (Electrostatic Discharge, ESD)
- 輻射耐受 (Radiated Susceptibility, RS)
- 快速脈衝 (Electrical Fast Transient, EFT)
- 雷擊 (Surge)
- 傳導耐受 (Conducted Susceptibility, CS)
- 電源頻率磁場 (Power Frequency Magnetic Field, PFMF)
- 電壓瞬降及中斷耐受(Voltage Dip and Short Interruption)

• 兩個基本要求:

1.場地內不能有電磁波反射物,這會造成量測誤差。
 2.場地內不能有其他電磁干擾,較好的環境是無反射遮罩室。

國家或組織	制定單位	標準編號
IEC (國際兩工禾呂侖)	CISPR(國際無線電干擾特別委員會)	CISPR
ICU (國際电上安貝智)	TC77(第77技術委員會)	IEC
European Community(歐 洲共同體)	CENELEC(歐洲電工標準化委員會)	EN
美國	FCC(聯邦通信委員會)	FCC Part
日本	VCCI(干擾自願控制委員會)	VCCI
中國	質量技術監督局	GB,GJB
台灣	BSMI(標準檢驗局)	CNS

標準	範例文件	敘述
基礎標準	IEC 61000-3-2	IEC基礎標準
	EN 61000-6-1	商業、住宅環境使用產品之EMS測試
治日神洋	EN 61000-6-2	工業環境使用產品之EMS測試
迎 田 保 午	EN 61000-6-3	商業、住宅環境使用產品之EMI測試
	EN 61000-6-4	工業環境使用產品之EMI測試
	EN 55014-1	電器類產品及系統之EMI測試
	EN 55014-2	電器類產品及系統之EMS測試
產品類標準	EN 55022	資訊類產品之EMI測試
	EN 55024	資訊類產品之EMS測試
	EN 55025	車輛及零組件之EMI測試
市田斉口 栖淮	EN 50130-4	保全、報警系統之EMS測試
守用性吅际午	EN 62040-2	不斷電系統之EMC測試

IEC 基礎標準

IEC Standard	Туре	EMC Certificate Item
		Radiated Emission (30MHz~1GHz)
		Radiated Emission (1GHz~6GHz)
CISPR 22	EMI	Conduction Emission
IEC 61000-3-2		Harmonic
IEC 61000-3-3		Voltage Fluctuation and Flicker
IEC 61000-4-2		ESD
IEC 61000-4-3		Radiated Susceptibility
IEC 61000-4-4		EFT
IEC 61000-4-5	EMS	Surge
IEC 61000-4-6		Conducted Susceptibility
IEC 61000-4-8		Power Frequency Magnetic Field
IEC 61000-4-11		Voltage Dip/Short Interruption

EN 基礎標準

EN Standard	Туре	EMC Certificate Item
		Radiated Emission (30MHz~1GHz)
		Radiated Emission (1GHz~6GHz)
EN 55022	EMI	Conduction Emission
EN 61000-3-2		Harmonic
EN 61000-3-3		Voltage Fluctuation and Flicker
EN 61000-4-2		ESD
EN 61000-4-3		Radiated Susceptibility
EN 61000-4-4	EMS	EFT
EN 61000-4-5		Surge
EN 61000-4-6		Conducted Susceptibility
EN 61000-4-8		Power Frequency Magnetic Field
EN 61000-4-11		Voltage Dip/Short Interruption

CISPR	FCC	EN	說明
CISPR11	Part 18	EN 55011	工業、科學及醫療設備
CISPR13	Part 15	EN 55013	電視、收音機及附屬設備
CISPR14-1		EN 55014	家用電器及工具
CISPR15		EN 55015	電子式照明
CISPR22		EN 55022	資訊產品
CISPR25	Part 15	EN 55025	車輛及零組件

MIL-STD-461F

		CE-101	電源線,30Hz~10KHz
	CE	CE-102	電源線,10KHz~10MHz
		CE-106	天線端,10KHz~40GHz
		RE-101	30Hz~100KHz,磁場
	RE	RE-102	10KHz~18GHz,電場
		RE-103	10KHz~40GHz,諧波
		CS-101	電源線,30Hz~150KHz
		CS-103	天線端,15KHz~10GHz,交互調變
		CS-104 天線端,30	天線端,30Hz~20GHz,消除不要訊號
	<u> </u>	CS-105	天線端,60Hz~100KHz,交叉調變
	03	CS-109	60Hz~100KHz,結構電流
EMS		CS-114	BCI, 10KHz~200MHz
	-	CS-115	BCI,脈衝激發
		CS-116	電源線,10K~100M,阻尼式弦狀波暫態
		RS-101	30Hz~100KHz,磁場
	RS	RS-103	2MHz~18GHz電場
		RS-105	暫態電磁場

BCI : Bulk Cable Injection

Mil Std Chamber Side View

• Mil Std 461 Defines the size of the chamber in terms if the EUT being measured, EUT size determines the size of the chamber. The sketches bellow show the standard MIL-STD chamber offered by ETS-Lindgren.

FIGURE 1. RF absorber loading diagram.

Conducted EMC Test

Conducted EMC Test

- Bonding Test
- Grounding Test
- Isolation Test
- CE on Transient Voltage and In-Rush Current-Time Domain
- CE on Primary Power Lines-Frequency Domain
- CE on Signal Lines-Time Domain
- CS on Primary Lines-Sine wave Injection
- CS on Primary Power Lines-Spike Injection

Bonding Test

	Sten	
Step	1 Verify that all required EMC test equipment in section 4.3 is ready a	and
1	四圖所示,C將內爾戲畫在測試平台上,用Bonding strap將SPEU機構地與測 至台連接好。	試
2	用電錶量測SPEU機構底盤和測試平台的阻抗,應小於100m歐姆。	

Grounding Test

Step	Action
1	如圖所示,將Saver與了。 FORMOSAT-5 FORMOS
2	用電錶量測SPEU機構/ デニ地(J3接頭Pin 4與Pin 19)之阻抗,應小於 等於100m歐姆。

Isuausn Test

	Step	Action	Result	Sign Off
	1	Connect the saver to J3 in Fig. 5-3.		
Step	2	Use the Milli-Ohmmeter to measure the resistance between the SPEU chassis and the secondary ground (Pin 4 and 10 of	2	
1	如圖所示	J3. The resistance should be ≦100 mΩ. ,將Saver與J1A、J1B、J2A、J2B與J3連打	妾好。	
2	用電錶量》 1M歐姆。	則SPEU機構底盤和主電源+28V(J1A接頭F	Pin 2)之阻	l抗,應大於

待測接頭	Туре	Pin	阻抗	
	J1A +28V	2	With SPEU Chassis:大於1M歐姆	
JIA			With Secondary Power+15V:大於1M歐姆	
			0	With SPEU Chassis:大於1M歐姆
JIB +28V	+28V	2	With Secondary Power+15V:大於1M歐姆	
		Λ	With SPEU Chassis:大於1M歐姆	
JIA	JIA Power Ground	Ground 4	With Secondary Power+15V:大於1M歐姆	
J1B	Power Ground 4	4	With SPEU Chassis:大於1M歐姆	
			With Secondary Power+15V:大於1M歐姆	

CE on Transient Voltage and In-Rush Current-Time Domain

Step	Action
1	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
2	確認EMC設備已上電。設置示波器的Trigger Coupling:DC Couple。Trigger Mode:Edge。Trigger Sweep:Trig'd。Horizontal:200us/div。
3	將設備如圖所示擺設好,只連接J1A(J1B不連接)。並將正極電源線(紅線)插座開關打開,負極電源線(黑線)插座開關關閉。
4	確認AIP的電源為31V,接著上電。
5	將正極電源線BOB開關關閉,讓31VDC電源施加到AIP上。
6	在EGSE方面,確認CDMU模擬器顯示頁面。
7	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
8	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
9	確認上電後電流與電壓在5ms內回到穩定值。
10	將示波器上電流與電壓圖存下來。檔名為FS5_AIP_31V_A。
11	確認AIP功能不會因電源開關的運作而影響其功能。
12	將正極電源線BOB開關打開。

待測接頭	施加電壓	檔名
	31VDC	FS5_AIP_31V_A
J1A	34VDC, OVP: 36.1VDC	FS5_AIP_34V_A
	22VDC	FS5_AIP_22V_A
	31VDC	FS5_AIP_31V_B
J1B	34VDC, OVP: 36.1VDC	FS5_AIP_34V_B
	22VDC	FS5_AIP_22V_B

OVP : Overvoltage Protection

CE on transient voltage and in-rush current – time domain for primary controller turned on to +31 V.

CE on transient voltage and in-rush current – time domain for primary controller turned on to +34 V.

CE on transient voltage and in-rush current – time domain for redundant controller turned on to +31 V.

CE on transient voltage and in-rush current – time domain for redundant controller turned on to +22 V.

CE on Primary Power Lines-Frequency Domain

FS5SPL-CEMC-PROC 0000 2013/09/15 17 of 29

- 53 Make sure that the AIP functions are not affected by the switching of the power.
- ⁵⁴ Open Warfal Down Band Current and Voltage Emission Limits

CE on primary power lines test setup.

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。並將正極電源線(紅線)插座 開關與負極電源線(黑線)插座開關關閉。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	在EMC控制室執行EMC32軟體,執行程序FS5 CE Voltage電壓輻射量測。完成後存 檔,檔名:FS5_AIP_CE_Pri_V_A。
7	解除EMI接收機的纜線,換上電流探針,設置如圖所示。
8	在EMC控制室執行EMC32軟體,執行程序FS5 CE Current電流輻射量測。完成後存 檔,檔名:FS5_AIP_CE_Pri_I_A。
9	確認AIP功能不會因電流流經電壓產生器而影響其功能。
10	將正極電源線BOB開關打開。
11	將設備如圖所示擺設好,只連接J1B(J1A不連接)。並將正極電源線(紅線)插座開關與負極電源線(黑線)插座開關關閉。重複步驟2-10。

待測接頭	程序	檔名
Ι1 Λ	FS5 CE Voltage	FS5_AIP_CE_Pri_V_A
JTA	FS5 CE Current	FS5_AIP_CE_Pri_ I _A
I1P	FS5 CE Voltage	FS5_AIP_CE_Pri_V_B
JID	FS5 CE Current	FS5_AIP_CE_Pri_ I _B

CE on primary power lines – frequency domain for primary controller on, current level.

CE on primary power lines – frequency domain for primary controller on, voltage level.

CE on primary power lines – frequency domain for redundant controller on, current level.

CE on primary power lines – frequency domain for redundant controller on, voltage level.

CE on Signal Lines-Time Domain

設置

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。
2	將J2B與BOB開關連接好,當做訊號測試點。
3	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。並設置AIP主電 源為+28VDC。
4	將訊號連接到示波器。
5	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
6	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
7	從BOB開關量測J2B訊號的電壓漣波,類比訊號不能超過10mVpp,數位訊號不能超過100mVpp。並將示波器上的圖存下來。
8	將正極電源線BOB開關打開。
9	解除J1A。將設備如圖所示擺設好,只連接J1B(J1A不連接)。重複步驟3-8。

待測接頭	訊號	Through J2B Pin	Through J2A Pin	檔名
	CDMU UART RX+	2		RX_1_A
	CDMU UART TX+	5	TX_1_A	
	CDMU RTS+	11		RTS_1_A
	CDMU CTS+	12		CTS_1_A
	CDMU DATA +	14		DATA_1_A
12.4	CDMU Clock+	16		Clock_1_A
JZA	CDMU UART RX-	3	_	RX_1_A
	CDMU UART TX-	6		TX_1_A
	CDMU RTS-	19		RTS_1_A
	CDMU CTS-	12		CTS_1_A
	CDMU DATA-	14		DATA_1_A
	CDMU Clock-	16		Clock_1_A
	CDMU UART RX+		2	RX_1_B
	CDMU UART TX +		5	TX_1_B
	CDMU RTS+		11	RTS_1_B
	CDMU CTS+		12	CTS_1_B
	CDMU DATA +		14	DATA_1_B
12B	CDMU Clock+	_	16	Clock_1_B
UZD	CDMU UART RX-	_	3	RX_1_B
	CDMU UART TX-		6	TX_1_B
	CDMU RTS-		19	RTS_1_B
	CDMU CTS-		12	CTS_1_B
	CDMU DATA-		14	DATA_1_B
	CDMU Clock-		16	Clock_1_B

TX signal line ripple voltage measurement on primary controller.

RTS signal line ripple voltage measurement on primary controller.

CTS signal line ripple voltage measurement on primary controller.

DATA signal line ripple voltage measurement on primary controller.

le	Prevu							ľ,											
						¥			· ·										
						V							ſ		_1	02116	9	4 78	v)
															=	02µ3	X	4.26	č.
														0	50	ισμε	O	4.30	¥
				-Fi											<u></u> Δ6	υzμs	_	Δ420	mv j
	6							1											
)			
																			-
																			_
																			-
																			-
																			-
																			-
																			1
D																			
																			-
																			1
																			-
																			· · 🕂
																			1
																			-
																			-
																			-
															·		<u>н</u> -		
			, in the state of	nnisiumu	nia a subsection in			n timeti									110		-
																			1
																			-
		n v D	CB.,	F :							100	19			0MSZe	πċ		<u> </u>	<u>00 V</u>
		V RE	*) **								<u>∎</u> →▼	200.00	00µs		point	s			
	Coupli	ina	Imped	anco	Inu	ort													
1	coupi	ing	Impeu	ance	HIV	en	Banc	iwidth		Label				_			6	7 Sep	2013
1	DC Rej	<i>m</i>	$1M\Omega$	50Ω	On	Off	250	JMHZ						N	tore		l	6:20:0	1

RX signal line ripple voltage measurement on primary controller.

Clock signal line ripple voltage measurement on primary controller.

Tek PreVu			
	e		
	الارتسالية المواد بإله باللغوان والمسيق المصيع المحصرين	Madera Proprietor and a second	□ −14.92µs 📵 −3.14 V
- · · · · · · · · · · ·			○ 225.9µs ⓑ −3.28 V
		L	<u>Δ240.8μs</u> Δ140mV
- ·	i i i i i i i i i i i i i i i i i i i		
·········			
• •			
•			
	konstruktionen ander einen ein		

CTS signal line ripple voltage measurement on redundant controller. RTS signal line ripple voltage measurement on redundant controller.

CS on Primary Lines-Sine wave Injection (30Hz~10KHz)

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。並設置AIP主電 源為+28VDC。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	設置Sine波輸出頻率,並且緩慢調整輸出峰對峰電壓到下列的值,接著將示波器上 的圖分別存下來。注意AC電流峰值不能超過DC電流的50%。每個頻率的Dwell時間 為1秒。
7	確認AIP功能不會因注入而影響其功能。
8	將正極電源線BOB開關打開。
9	解除J1A。將設備如圖所示擺設好,只連接J1B(J1A不連接)。重複步驟3-8。

待測接頭	Frequency	Vpp	檔名
	30	2.8	CS_30_A
	60	2.8	CS_60_A
	70	2.8	CS_70_A
	90	2.8	CS_90_A
	100	2.8	CS_100_A
	300	2.8	CS_300_A
14 A	500	2.8	CS_500_A
JIA	700	2.8	CS_700_A
	900	2.8	CS_900_A
	1k	2.8	CS_1K_A
	3k	2.26	CS_3K_A
	5k	2.01	CS_5K_A
	7k	1.85	CS_7K_A
	10k	1.67	CS_10K_A
	30	2.8	CS_30_B
	60	2.8	CS_60_B
	70	2.8	CS_70_B
	90	2.8	CS_90_B
	100	2.8	CS_100_B
	300	2.8	CS_300_B
I1R	500	2.8	CS_500_B
	700	2.8	CS_700_B
	900	2.8	CS_900_B
	1k	2.8	CS_1K_B
	3k	2.26	CS_3K_B
	5k	2.01	CS_5K_B
	7k	1.85	CS_7K_B
	10k	1.67	CS_10K_B

CS on Primary Lines-Sine wave Injection (10KHz~100MHz)

10 kHz	1.67	CS 10K B

- 15 Make sure that AIP functions are not affected by the injections.
- 16 Open the positive power line (red line) power switch.
- 17 Turn off the primary power per FS5 TT-FEC section 3.4.3.3.3.

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。並設置AIP主電 源為+28VDC。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	設置R&S SG Sine波輸出頻率,並且緩慢調整輸出峰對峰電壓到下列的值,接著將 示波器上的圖分別存下來。注意AC電流峰值不能超過DC電流的50%。每個頻率的 Dwell時間為1秒。
7	確認AIP功能不會因注入而影響其功能。
8	將正極電源線BOB開關打開。
9	解除J1A。將設備如圖所示擺設好,只連接J1B(J1A不連接)。重複步驟3-8。

待測接頭	Frequency	Vpp	檔名
	30k	1.14	CS_30K_A
	50k	0.89	CS_50K_A
	70k	0.73	CS_70K_A
	90k	0.60	CS_90K_A
	100k	0.55	CS_100K_A
	300k	0.55	CS_300K_A
	600k	0.55	CS_600K_A
J1A	1M	0.55	CS_1M_A
	3M	0.55	CS_3M_A
	6M	0.55	CS_6M_A
	10M	0.55	CS_10M_A
	30M	0.55	CS_30M_A
	50M	0.55	CS_50M_A
	70M	0.55	CS_70M_A
	100M	0.55	CS_100M_A
	30k	1.14	CS_30K_B
	50k	0.89	CS_50K_B
	70k	0.73	CS_70K_B
	90k	0.60	CS_90K_B
J1B	100k	0.55	CS_100K_B
	300k	0.55	CS_300K_B
	600k	0.55	CS_600K_B
	1M	0.55	CS_1M_B
	3M	0.55	CS_3M_B
	6M	0.55	CS_6M_B
	10M	0.55	CS_10M_B
	30M	0.55	CS_30M_B
	50M	0.55	CS_50M_B
	70M	0.55	CS_70M_B
	100M	0.55	CS 100M B

CS on Primary Power Lines-Spike Injection

- 16 Open the positive power line (red line) power switch.
- 17 Turn off the primary power per FS5SPL-CT-PROC section 3.4.3.3.3.

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	設置AIP的主電源為34VDC。
7	用訊號產生器產生3V/2ms的突波疊加到主線上。每次脈衝設置完後測試時間1分 鐘,脈衝頻率為10Hz。將檔案儲存:CS_SPK_+3_A。
8	確認AIP功能正常。
9	將訊號產生器關掉,調整電源放大器至最小值。
10	將變壓器極性顛倒至紅色電源線。
11	設置AIP的主電源為22VDC。
12	用訊號產生器產生-3V/2ms的突波疊加到主線上。每次脈衝設置完後測試時間1分 <i>鐘,脈衝頻率為10Hz。將檔案儲存:CS_SPK3_A。</i>
13	將正極電源線BOB開關打開。
14	解除J1A。將設備如圖所示擺設好,只連接J1B(J1A不連接)。重複步驟3-8。

待測接頭	電源設置	突波	檔名
Ι 1 Λ	34V	3V/2ms	CS_SPK_+3_A
JTA	22V	-3V/2ms	CS_SPK3_A
I1D	34V	3V/2ms	CS_SPK_+3_B
JID	22V	-3V/2ms	CS_SPK3_B

Spike injection on the Primary Power Line of the primary controller for +34VDC with +3V/2ms.

Spike injection on the Primary Power Line of the redundant controller for +34V with +3V/2ms.

Spike injection on the Primary Power Line of the primary controller for +22VDC with -3V/2ms.

Spike injection on the Primary Power Line of the redundant controller for ± 22 VDC with -3V/2ms.

Radiated EMC Test

Radiated EMC Test

- Background Noise Measurement
- Radiated Emission Test
- Radiated Susceptibility Test

Background Noise Measurement

FS5SPL

20

Background Noise Measurement

Step	Action
1	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
2	確認EMC設備已上電。
3	將設備如圖所示擺設好,將Rod antenna(3310C)設置成垂直方位,準備進 行14KHz~30MHz的量測。
4	設置EMC32的檔案為FS5_RE_14K-30M。
5	確認量測頻率範圍為14KHz~30MHz。
6	完成量測,將檔案存檔,檔名:BG_AIP_14K-30M。

Antenna	EMC File	檔名	
Rod antenna (3310C)	FS5_RE_14K-30M	BG_AIP_14K-30M	
Biconical (HK116)	ES5 RE 3014-20014	V : BG_AIP_30M-200M_V	
	1 33_NL_30W-200W	H : BG_AIP_30M-200M_H	
Double ridge horn	ES5 RE 200M-1G	V : BG_AIP_200M-1G_V	
(3106B)		H : BG_AIP_200M-1G_H	
	FS5_RE_1G-10G	V : BG_AIP_1G-10G_V	
		H : BG_AIP_1G-10G_H	
	FS5_RE_1565M-1585M	V : BG_AIP_1565M-1585M_V	
Double ridge horn		H : BG_AIP_1565M-1585M_H	
(3115)	FS5_RE_2039M-2041M	V : BG_AIP_2039M-2041M_V	
		H : BG_AIP_2039M-2041M_H	
	FS5_RE_2025M-2110M	V : BG_AIP_2025M-2110M_V	
		H : BG_AIP_2025M-2110M_H	

Radiated Emission Test

RE Limits

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。將Rod antenna (3310C) 設置成垂直方位,進備進行14KHz~30MHz的量測。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	設置EMC32的檔案為FS5_RE_14K-30M。
7	確認量測頻率範圍為14KHz~30MHz。
8	完成量測,將檔案存檔,檔名:RE_AIP_14K-30M_A。
_	
45	最後要打開正極電源(紅線)BOB開關。

Primary (J1A)

Antenna	EMC Test File	檔名	
Rod antenna (3310C)	FS5_RE_14K-30M	RE_AIP_14K-30M_A	
Biconical (HK116)	ES5 RE 30M 200M	V : RE_AIP_30M-200M_V_A	
	1 33_NL_30IVI-200IVI	H : RE_AIP_30M-200M_H_A	
Double ridge horn	ES5 RE 2001/ 10	V : RE_AIP_200M-1G_V_A	
(3106B)		H : RE_AIP_200M-1G_H_A	
	FS5_RE_1G-10G	V : RE_AIP_1G-10G_V_A	
		H : RE_AIP_1G-10G_H_A	
	FS5_RE_1565M-1585M	V : RE_AIP_1565M-1585M_V_A	
Double ridge horn		H : RE_AIP_1565M-1585M_H_A	
(3115)	FS5_RE_2039M-2041M	V : RE_AIP_2039M-2041M_V_A	
		H : RE_AIP_2039M-2041M_H_A	
	FS5_RE_2025M-2110M	V : RE_AIP_2025M-2110M_V_A	
		H : RE_AIP_2025M-2110M_H_A	

Step	Action
1	將設備如圖所示擺設好,只連接J1B(J1A不連接)。將Rod antenna (3310C)設置成垂直方位,進備進行14KHz~30MHz的量測。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面、科學資料是否異常。
6	設置EMC32的檔案為FS5_RE_14K-30M。
7	確認量測頻率範圍為14KHz~30MHz。
8	完成量測,將檔案存檔,檔名:RE_AIP_14K-30M_B。
-	
45	最後要打開正極電源(紅線)BOB開關。

Redundancy (J1B)

Antenna	EMC Test File	檔名	
Rod antenna (3310C)	FS5_RE_14K-30M	RE_AIP_14K-30M_B	
Riconical (HK116)	ES5 RE 301/ 2001/	V : RE_AIP_30M-200M_V_B	
		H : RE_AIP_30M-200M_H_B	
Double ridge horn	ES5 RE 200M 1G	V : RE_AIP_200M-1G_V_B	
(3106B)		H : RE_AIP_200M-1G_H_B	
	FS5_RE_1G-10G	V : RE_AIP_1G-10G_V_B	
		H : RE_AIP_1G-10G_H_B	
	FS5_RE_1565M-1585M	V : RE_AIP_1565M-1585M_V_B	
Double ridge horn		H : RE_AIP_1565M-1585M_H_B	
(3115)	FS5_RE_2039M-2041M	V : RE_AIP_2039M-2041M_V_B	
		H : RE_AIP_2039M-2041M_H_B	
	FS5_RE_2025M-2110M	V : RE_AIP_2025M-2110M_V_B	
		H : RE_AIP_2025M-2110M_H_B	

RE for 14KHz to 30 MHz.

RE with primary controller on for 14KHz to 30 MHz.

RE with redundant controller on for 14KHz to 30 MHz.

RE for 30 MHz to 200 MHz in horizontal position.

RE with primary controller on for 30 MHz to 200 MHz in horizontal position

RE with redundant controller on for 30 MHz to 200 MHz in horizontal position

RE for 30 MHz to 200 MHz in vertical position.

90

80

RE with primary controller on for 30 MHz to 200 MHz in vertical position.

RE with redundant controller on for 30 MHz to 200 MHz in vertical position.

800 900 1G

600

500

700

-20

200N

400

300

RE with redundant controller on for 200 MHz to 1 GHz in horizontal position.

RE for 200 MHz to 1 GHz in vertical position.

RE with primary controller on for 200 MHz to 1 GHz in vertical position.

RE with redundant controller on for 200 MHz to 1 GHz in vertical position.

5G 6 7 8 9 10G

-20

1G

RE for 1 GHz to 10 GHz in vertical position.

RE with primary controller on for 1 GHz to 10 GHz in vertical position.

RE with redundant controller on for 1 GHz to 10 GHz in vertical position.

RE for 1,565 MHz to 1,585 MHz in vertical position.

RE with primary controller on for 1,565 MHz to 1,585 MHz in vertical position.

2039.5 2040 2040.5

2041

-20

2039

RE for 2,039 MHz to 2,041 MHz in vertical position.

90 80 70 60 50 Level in dBµV/ 40 30 20 FS-5 S-Band 2.040000300 GHz 10 8.319 dBuV -10 -20 2039 2039.5 2040 2040.5 2041 Frequency in MHz

RE with primary controller on for 2,039 MHz to 2,041 MHz in vertical position.

RE with redundant controller on for 2,039 MHz to 2,041 MHz in vertical position.

RE for 2,025 MHz to 2,110 MHz in vertical position.

901

-20

RE with primary controller on for 2,025 MHz to 2,110 MHz in vertical position.

RE with redundant controller on for 2,025 MHz to 2,110 MHz in vertical position.

Radiated Susceptibility Test

Vertical Polarization 14KHz~30MHz@10Vrms/m, PM

- +J I CHOIM the measurement of nequency range 2025 with 2 110 with 2.
- 44 Save the test data to filename: **RE_AIP_2025M-2110M_H_B**
- 45 Open the positive power line (red line) BOB switch.

V(rms) / m

RS Electric Field Level

Frequency (Hz)

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。將E-Field(AT3000) 產生器設置成垂直方位。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面與科學資料是否異常。
6	設置EMC32的檔案為FS5_RS_14K-30M。
7	14KHz~30MHz@10Vrms/m,PM。輻射RF訊號。
8	監控AIP是否有異常現象。
9	完成量測,將檔案存檔,檔名:RS_AIP_14K-30M_A。
10	打開正極電源(紅線)BOB開關。
11	將設備如圖所示擺設好,連接J1B(J1A不連接)。將E-Field(AT3000)產 生器設置成垂直方位。重複步驟1-10。

Vertical Polarization 30MHz~200MHz@5Vrms/m, PM 200MHz~1GHz@5Vrms/m, PM 1GHz~2GHz@5Vrms/m, PM 2GHz~10GHz@5Vrms/m, PM

Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。將Biconical antenna (3109)設置成垂直方位。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面與科學資料是否異常。
6	設置EMC32的檔案為FS5_RS_30M-200M。
7	30MHz~200MHz@5Vrms/m,PM。輻射RF訊號。
8	監控AIP是否有異常現象。
9	完成量測,將檔案存檔,檔名:RS_AIP_30M-200M_V_A。
10	打開正極電源(紅線)BOB開關。
11	將設備如圖所示擺設好,連接J1B(J1A不連接)。將Biconical antenna (3109)設置成垂直方位。重複步驟1-10。

Antenna	EMC Test File	RF Signal	檔名
		30MHz~200MHz@ 5Vrms/m, PM.	RS_AIP_30M-200M_V_A
Biconical antenna	FS5_RS_30M-200M		RS_AIP_30M-200M_V_B
(3109)			RS_AIP_30M-200M_H_A
			RS_AIP_30M-200M_H_B
		200MHz~1GHz@ 5Vrms/m, PM.	RS_AIP_200M-1G_V_A
Log.periodic	FS5_RS_200M-1G		RS_AIP_200M-1G_V_B
antenna			RS_AIP_200M-1G_H_A
			RS_AIP_200M-1G_H_B
		1GHz~2GHz@ 5Vrms/m, PM.	RS_AIP_1G-2G_V_A
	FS5_RS_1G-2G		RS_AIP_1G-2G_V_B
			RS_AIP_1G-2G_H_A
Double ridge			RS_AIP_1G-2G_H_B
horn antenna	FS5_RS_2G-10G	2GHz~10GHz@ 5Vrms/m, PM.	RS_AIP_2G-10G_V_A
			RS_AIP_2G-10G_V_B
			RS_AIP_2G-10G_H_A
			RS_AIP_2G-10G_H_B

RS for 200 MHz to 1 GHz in horizontal position.

RS with primary controller on for 200 MHz to 1 GHz in horizontal position.

RS for 200 MHz to 1 GHz in vertical position.

RS with primary controller on for 200 MHz to 1 GHz in vertical position.

RS with redundant controller on for 200 MHz to 1 GHz in vertical position.

RS for 1 GHz to 2 GHz in horizontal position (the following tests used this antenna in the horizontal position).

RS with primary controller on for 1 GHz to 2 GHz in horizontal position.

RS with redundant controller on for 1 GHz to 2 GHz in horizontal position.

RS for 1 GHz to 2 GHz in vertical position (the following tests used this antenna in the vertical position).

RS with primary controller on for 1 GHz to 2 GHz in vertical position.

RS with redundant controller on for 1 GHz to 2 GHz in vertical position.

RS with primary controller on for 2 GHz to 10 GHz in horizontal position.

RS with redundant controller on for 2 GHz to 10 GHz in horizontal position.

Frequency in GHz

RS with primary controller on for 2 GHz to 10 GHz in vertical position.

RS with redundant controller on for 2 GHz to 10 GHz in vertical position

Local E-Field by Bus Antenna 2214MHz~2216MHz@20Vrms/m, PM. 8GHz~8.4GHz@40Vrms/m, PM.
Step	Action
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。將Double ridge horn antenna(3117)設置成垂直方位。
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。
3	確認EMC設備已上電。
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。
5	在EGSE方面,監控指令與遙傳介面與科學資料是否異常。
6	設置EMC32的檔案為FS5_RS_2214M-2216M。
7	2214MHz~2216MHz@20Vrms/m,PM。輻射RF訊號。
8	監控AIP是否有異常現象。
9	完成量測,將檔案存檔,檔名:RS_AIP_2214M-2216M_V_A。
10	打開正極電源(紅線)BOB開關。
11	將設備如圖所示擺設好,連接J1B(J1A不連接)。將Double ridge horn

Antenna	EMC Test File	RF Signal	檔名		
Double ridge horn antenna (3117)	FS5_RS_2214M-2216M	2214MHz~2216MHz@ 20Vrms/m, PM.	RS_AIP_2214M-2216M_V_A		
			RS_AIP_2214M-2216M_V_B		
			RS_AIP_2214M-2216M_H_A		
			RS_AIP_2214M-2216M_H_B		
	FS5_RS_8000M-8400M	8GHz~8.4GHz@ 40Vrms/m, PM.	RS_AIP_8G-8.4G_V_A		
			RS_AIP_8G-8.4G_V_B		
			RS_AIP_8G-8.4G_H_A		
			RS_AIP_8G-8.4G_H_B		

RS with primary controller on for 2,214 MHz to 2,216 MHz in horizontal position.

 Frequency in MHz

 Frequency in MHz

 RS with redundant controller on for 2,214 MHz to 2,216 MHz in horizontal position.

 RS with redundant controller on for 2,214 MHz to 2,216 MHz in vertical position.

RS with primary controller on for 2,214 MHz to 2,216 MHz in vertical position.

RS with primary controller on for 8.0 GHz to 8.4 GHz in horizontal position. RS with redundant controller on for 8.0 GHz to 8.4 GHz in horizontal position.

RS with redundant controller on for 8.0 GHz to 8.4 GHz in vertical position. RS with primary controller on for 8.0 GHz to 8.4 GHz in vertical position.

Launcher Environment 2200MHz~2300MHz@6.3Vrms/m, PM. 5400MHz~5900MHz@63.1Vrms/m, PM.

Step	Action				
1	將設備如圖所示擺設好,只連接J1A(J1B不連接)。將Double ridge horn antenna(3117)設置成垂直方位。				
2	確認AIP測試的設置與接線。請參考FS5SPL-CT-PROC的3.4.3.1節。				
3	確認EMC設備已上電。				
4	在EGSE方面,確認功能測試程序。請參考FS5SPL-CT-PROC的3.4.3.2節。				
5	在EGSE方面,監控指令與遙傳介面與科學資料是否異常。				
6	設置EMC32的檔案為FS5_RS_2200M-2300M。				
7	2200MHz~2300MHz@6.3Vrms/m,PM。輻射RF訊號。				
8	監控AIP是否有異常現象。				
9	完成量測,將檔案存檔,檔名:RS_AIP_2200M-2300M_V_A。				
10	打開正極電源(紅線)BOB開關。				
11	將設備如圖所示擺設好,連接J1B(J1A不連接)。將Double ridge horn				

Antenna	EMC Test File	RF Signal	檔名		
Double ridge horn antenna (3117)		2200MHz~2300MHz@ 6.3Vrms/m, PM.	RS_AIP_2200M-2300M_V_A		
			RS_AIP_2200M-2300M_V_B		
	F33_R3_2200IVI-2300IVI		RS_AIP_2200M-2300M_H_A		
			RS_AIP_2200M-2300M_H_B		
	FS5_RS_5400M-5900M	5400MHz~5900MHz@ 63.1Vrms/m, PM.	RS_AIP_5400M-5900_V_A		
			RS_AIP_5400M-5900_V_B		
			RS_AIP_5400M-5900_H_A		
			RS_AIP_5400M-5900_H_B		

RS with primary controller on for 2,200 MHz to 2,300 MHz in horizontal position. RS with primary controller on for 2,200 MHz to 2,300 MHz in vertical position.

RS with redundant controller on for 2,200 MHz to 2,300 MHz in horizontal position. RS with redundant controller on for 2,200 MHz to 2,300 MHz in vertical position.

結論

- 電機設備和電子產品在使用過程中可能產生電磁輻射,以致干擾 其他設備之正常運作。因此各國已在過去二十年期間先後立法規 範,要求任何產品符合EMC法規標準,否則不準上市銷售。
- 近年來隨著無線通訊的快速發展,法規標準也日趨嚴格。由於現代的電子產品,功能越來越強,操作速度也越來越快,電子線路也越來越密集與複雜。所以EMC問題也變成了設計上主要挑戰。
- 解決EMC問題必須是在設計電路之初即以系統觀點考慮可能的 EMC問題。更要事先進行原因分析評估,事後進行補救所花費的 成本將更可觀。

FS-5/AIP PAR FS5SPL-CDRL-1014 11% f 50,0001,2013/10/03

EMC Test on Advanced lonospheric Probe

Chi-Kuang Chao

Graduate Institute of Space Science, National Central University

May 5, 2016

Electrical specifications

- Input voltage: **28±6** VDC (wider than +26 V to +34 V).
- Power on: 23.8 to 26.9 W and 0.85 to 0.96 A (\leq 1.3 A, limited by PCDU) for +28 V.
- Operation: **1.9** W in average.
 - Sensor: 7.11 W (<11.3 W in analysis), 0.12 A for +28 V and 0.25 A for +15 V.
 - SPEU (without sensor load): 4.76 W (< 8.15 W in analysis),
 0.17 A for +28 V.
- Average power per orbit: can be reduced to 5 W if the duty cycle of AIP can be reduced to 42 % (≥30 %).
- Single event latch-up (over-current) protection.

- **Circuit protection test** (T&C, 8/13/2013): FS5SPL-CPT-PROC/RPT.
- Power measurement (NCU, 8/22/2013): FS5SPL-PMT-PROC/RPT.

FS-5/AIP PAR FS5SPL-CDRL-1014 122of 50,0001,2013/10/03 Requirements for circuit protection test

- 為保護AIP受到單粒子閂鎖效應的影響,當PCDU供給AIP的 電流量高於AIP最大操作電流的I.75倍,並且持續時間高於I 毫秒,此時AIP須關閉來自PCDU的電源。過了0.3秒後,AIP 須自動開啟來自PCDU的電源。
- 為能有效進行閂鎖效應的保護,可依照元件的電流量,分組 進行過量電流偵測。

Circuit protection test

Select

Folder

Save

TEKO001.JPC

CH2 \ 2.40V

Select

Folder

Save

TEK0005.JPG

CH2 5.00V

M 100m

M 100m

M 100m

Select

Folder

Save

TEK0004.JP0

Select

Folder

Save

TEK0003.JPG

M 100ms

Tek

CH2 10.0V

M 100ms

17-Aug-13 17:55

Select

Folder

Save

TEK0000.JPG

FS-5/AIP

FS5SPL-CDRL-1014

123 f 50,0001,2013/10/03

PAR

Power measurement

Power measurement (cont.)

FS-5/AIP

FS5SPL-CDRL-1014

125 f 50,0001,2013/10/03

PAR

The switch-on current shall return to nominal current level within 5 ms.

Environmental tests

 EMC test (NSPO, 9/16/2013 to 9/18/2013 & 9/23/2013 to 9/27/2013): FS5SPL-CEMC-PROC/RPT and FS5SPL-REMC-PROC/RPT.

FS-5/AIP PAR FS5SPL-CDRL-1014 1276f 50, 0001, 2013/10/03

EMC test

- Conducted EMC
 - Grounding and isolation.
 - CE on transient voltage and in-rush current time domain, on primary power lines - frequency domain, and on signal lines - time domain.
 - CS on primary power lines sine wave and spike injection.
- Radiated EMC
 - RE 14 KHz to 10 GHz, GPS receiver, S band receiver, and launcher receiver.
 - RS 200 MHz to 10 GHz, local E-field by bus antennas, and launcher environment (under a conclusion of TRR meeting on EMC, 14 KHz to 200 MHz could be performed after an amplifier for this radio band returns to NSPO).

Grounding

- 接地:由接頭的腳位連接。這裡所指 AIP 的主要電源,係包括衛星 PCDU 所提供的主要電源與備援電源。而 AIP 的次要電源,係指由 AIP 的主要電源再轉換成其他電壓(如使用 DC/DC Converter)的電源供應。衛星與AIP的接地方式採用 分散式星狀點接地(Distributed Star-Point Ground, DSPG)。
- 主要電源接地:AIP 的主要電源需使用單點接地(Single Point Grounding, SPG)。主要電源不可使用SPEU的外殼底座 (Chassis)為電源迴路。AIP 的主要電源線路(火線與迴 路)與SPEU外殼底座間的直流隔絕和主要電源線路與次要電 源線路間的直流電阻要高於Ι MΩ。

Grounding

- 次要電源接地:AIP 的次要電源應該遵守單點接地,並且次 要電源迴路須直接與 SPEU 的外殼底座或是與探測器的外殼 底座相連。其間的直流電阻值亦須小於 20 mΩ,且次要電源 迴路與外殼底座間的電容應小於 10 nF。
- 外殼底座接地:探測器的外殼底座與螺釘間的直流電阻值須小於 100 mΩ。螺釘為 M4 規格,最小長度為 10 mm,本身的直流電阻值須小於 20 mΩ。SPEU 的外殼底座,須以乾淨的金屬對金屬面,與衛星結構電導接觸。外殼底座的最大直流電阻須小於 100 mΩ。探測器與 SPEU 的接頭,其金屬外殼需與外殼底座相接,其直流電阻值亦須小於 100 mΩ。

FS-5/AIP PAR FS5SPL-CDRL-1014 13@f 50,0001,2013/10/03

- 地面測試系統接地:AIP 地面測試系統的外殼底座均需與測 試接地面相連,測試接地面需與衛星的星狀點接地相連。
- 接地連線:探測器與 SPEU 的外殼底座將經由連線接頭的外殼,透過纜線的保護層,與衛星本體接地。其直流電阻值亦須小於 100 mΩ。
- 訊號迴路: AIP 訊號電路接收端需與次要電源迴路和外殼底座相隔絕。其隔絕電阻需大於150 kΩ(RS-422界面除外)。
 當使用單端訊號傳輸,需提供獨立的訊號迴路,不可使用接地端當作訊號迴路(除非使用同軸電纜)。相同類型的訊號迴路,可使用共同訊號迴路。例如:類比訊號可共用類比接地端,數位訊號可共用數位接地端,但類比接地端與數位接地端不可相連。

FS-5/AIP PAR

FS5SPL-CDRL-1014 13 bf 50, 0001, 2013/10/03

Grounding and isolation

Resistance	Requirement	Measurement	
Resistance between SPEU chassis and the test bench	< 100 mΩ	6.8 mΩ	
Resistance between SPEU chassis and secondary ground	≤ I00 mΩ	ND	
Resistance between SPEU chassis and primary power +28V of primary controller	> I MΩ	OL	
Resistance between SPEU chassis and primary power +28V of redundant controller	> I MΩ	OL	
Resistance between SPEU chassis and primary power ground of primary controller	> I MΩ	OL	
Resistance between SPEU chassis and primary power ground of redundant controller	> I MΩ	OL	
Resistance between primary power +28V of primary controller and the secondary power +15V	> I MΩ	OL	
Resistance between primary power +28V of redundant controller and the secondary power +15V	> I MΩ	OL	
Resistance between primary power ground of primary controller and the secondary power +15V	> I MΩ	OL	
Resistance between primary power ground of redundant controller and the secondary power +15V	> I MΩ	OL	

FS-5/AIFCE on transient voltage and in-rush FSSSPL-CDRL-1014 1326 50, 0001, 2013/10/03 current - time domain

Redundant	0 -455j 0 3.59m 	45 20.0mA 15 100mA ms <u>A80.0mA</u>	Redundan		−992.0µs 60.0mA 2.928ms 180mA Δ3.920ms Δ120mA	Redundant	e <mark>r</mark> o	
								n an
	+3				-34V			+22∨
petrilapada je da u dojeta o na incisa se je ob a spano majita nasije na sajegate mostraje na se se			3. Na haya mana ka ka ka ma ma haya ka mana ma		a and the second se	ge year waar waar waa dhiga ar waaqoo ka isaa waa ka isid ah da waxaa waa maa maya dha dhaadhaa mayaa ya isid d		n an
1 10.0 V S Save Screen Image Waveform	1.00ms 1.00MS/s Tr→マ204.000µs 1.00MS/s Recall Assign Setup File Utilities Utilities	1 <i>F</i> 24.8 V	1 10.0 V Ω Save Save Save Save Save Save Waveform Setup Waveform	2.00ms Tr→204.000µs Recall Assign Betup Mage U	00KS/s 1 7 32.2 V kk points 17 32.2 V File 17 569 2013 11:44:42 11:44:42 11:44:42	1 10.0 V Ω C 1.00 A A Save Save Save Recall Screen Image Waveform Setup Waveform	2.00ms T+>204.000µt Recall Setup	S00kS/S 10k points File Utilities 17 Sep 2013 11:49:46

FS-5/AIP PAR FS5SPL-CDRL-1014 13 of 50,0001,2013/10/03 CE on signal lines - time domain

Primary

FS-5/AIP CS on primary power lines - sine **PAR** FSSSPL-CDRL-1014 1350f 50,0001,2013/10/03 Wave and spike injection

Spike injection

RE (14 KHz to 10 GHz)

FS-5/AIP

FS-5/AIP PAR FS5SPL-CDRL-1014 1376 50,0001,2013/10/03 FS5SPL-CDRL-1014

FS-5/AIP RS (200 MHz to 10 GHz) PAR FS5SPL-CDRL-1014 13&f 50,0001,2013/10/03 I GHz - 2 GHz 2 GHz - 10 GHz 2,214 MHz - 2,216 MHz 8.0 GHz - 8.4 GHz 2,200 MHz - 2,300 MHz 5,400 MHz - 5,900 MHz 200 MHz - I GHz Н Primary 200 MHz - I GHz I GHz - 2 GHz 2 GHz - 10 GHz 2,214 MHz - 2,216 MHz 8.0 GHz - 8.4 GHz 2,200 MHz - 2,300 MHz 5,400 MHz - 5,900 MHz H Redundant

FS-5/AIP PAR FS5SPL-CDRL-1014 13%f 50,0001,2013/10/03

 All specifications of AIP/FM can meet the requirements in FS5-IRD-0001 document and follow the guidelines of FS5SPL-CDRL-1003, 1005 and 1009 documents except for mass property, temperature sensor anomaly on ADDA board, and EMC issues (CE at 96 MHz, RE within 26.7 MHz and 110 MHz, and RS within 14 KHz and 200 MHz). These NCRs were presented at PAR meetings and requests for waiver have been submitted.